Длина Площадь Объем Масса (Вес) Температура Энергия Давление Инфо

 

Температурные шкалы

Температурные шкалы, системы сопоставимых числовых значений температуры. Температура не является непосредственно измеряемой величиной; ее значение определяют по температурному изменению какого-либо удобного для измерения физического свойства термометрического вещества. Выбрав термометрическое вещество и свойство, необходимо задать начальную точку отсчета и размер единицы температуры - градуса. Таким образом определяют эмпирические Температурные шкалы. В Температурных шкалах обычно фиксируют две основные температуры, соответствующие точкам фазовых равновесий однокомпонентных систем (так называемые реперные или постоянные точки), расстояние между которыми называют основным температурным интервалом шкалы. В качестве реперных точек используют: тройную точку воды, точки кипения воды, водорода и кислорода, точки затвердевания серебра, золота и другие. Размер единичного интервала (единицы температуры) устанавливают как определенную долю основного интервала. За начало отсчета Температурных шкал принимают одну из реперных точек. Так можно определить эмпирическую (условную) Температурную шкалу по любому термометрическому свойству x. Если принять, что связь между x и температурой t линейна, то температура tx = n(xt - x0)/(xn - x0), где xt, x0 и хn - числовые значения свойства x при температуре t в начальной и конечной точках основного интервала, (хn - 0)/n - размер градуса, n - число делений основного интервала.

В шкале Цельсия, например, за начало отсчета принята температура затвердевания воды (таяния льда), основной интервал между точками затвердевания и кипения воды разделен на 100 равных частей (n = 100).

Температурные шкалы представляет собой, таким образом, систему последовательных значений температуры, связанных линейно со значениями измеряемой физической величины (эта величина должна быть однозначной и монотонной функцией температуры). В общем случае Температурные шкалы могут различаться по термометрическому свойству (им может быть тепловое расширение тел, изменение электрического сопротивления проводников с температурой и т. п.), по термометрическому веществу (газ, жидкость, твердое тело), а также зависеть от реперных точек. В простейшем случае Температурные шкалы различаются числовыми значениями, принятыми для одинаковых реперных точек. Так, в шкалах Цельсия (°С), Реомюра (°R) и Фаренгейта (°F) точкам таяния льда и кипения воды при нормальном давлении приписаны разные значения температуры. Соотношение для пересчета температуры из одной шкалы в другую:

n °С = 0,8n °R = (1,8n+32) °F.

Непосредственный пересчет для Температурных шкал, различающихся основными температурами, без дополнительных экспериментальных данных невозможен. Температурные шкалы, различающиеся по термометрическому свойству или веществу, существенно различны. Возможно неограниченное число не совпадающих друг с другом эмпирических Температурных шкалы, т. к. все термометрические свойства связаны с температурой нелинейно и степень нелинейности различна для разных свойств и веществ. Температуру, измеренную по эмпирическим Температурным шкалам, называют условной ("ртутная", "платиновая" температура и т. д.), ее единицу - условным градусом. Среди эмпирических Температурных шкал особое место занимают газовые шкалы, в которых термометрическим веществом служат газы ("азотная", "водородная", "гелиевая" Температурные шкалы). Эти Температурные шкалы меньше других зависят от применяемого газа и могут быть (введением поправок) приведены к теоретической газовой Температурной шкале Авогадро, справедливой для идеального газа. Абсолютной эмпирической Температурной шкалой называют шкалу, абсолютный нуль которой соответствует температуре, при которой численное значение физического свойства x = 0 (например, в газовой Температурной шкале Авогадро абсолютный нуль температуры соответствует нулевому давлению идеального газа). Температуры t(x) (по эмпирической Температурной шкале) и T(x) (по абсолютной эмпирической Температурной шкале) связаны соотношением T(x) = t(x) + Т0(x), где Т0(x) - абсолютный нуль эмпирической Температурной шкалы (введение абсолютного нуля является экстраполяцией и не предполагает его реализации).

Принципиальный недостаток эмпирических Температурных шкал- их зависимость от термометрического вещества - отсутствует у термодинамической Температурной шкалы, основанной на втором начале термодинамики. При определении абсолютной термодинамической Температурной шкалы (шкала Кельвина) исходят из цикла Карно. Если в цикле Карно тело, совершающее цикл, поглощает теплоту Q1 при температуре Т1 и отдает теплоту Q2 при температуре Т2, то отношение Т12 = Q1/Q2 нe зависит от свойств рабочего тела и позволяет по доступным для измерений величинам Q1 и Q2 определять абсолютную температуру. Вначале основной интервал этой шкалы был задан точками таяния льда и кипения воды при атмосферном давлении, единица абсолютной температуры соответствовала 1/100 части основного интервала, за начало отсчета была принята точка таяния льда. В 1954 X-я Генеральная конференция по мерам и весам установила термодинамическую Температурную шкалу с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °С. Температура Т в абсолютной термодинамической Температурной шкале измеряется в Кельвинах (К). Термодинамическая Температурная шкала, в которой для точки таяния льда принята температура t = 0 °С, называется стоградусной. Соотношения между температурами, выраженными в шкале Цельсия и абсолютной термодинамической Температурной шкалой:

T K = t °С + 273,15 K, nK = n °С,

так что размер единиц в этих шкалах одинаков. В США и некоторых других странах, где принято измерять температуру по шкале Фаренгейта, применяют также абсолютную Температурную шкалу Ранкина. Соотношение между Кельвином и градусом Ранкина: nК = l,8n°Ra, по шкале Ранкина точка таяния льда соответствует 491,67 °Ra, точка кипения воды 671,67 °Ra.

Любая эмпирическая Температурная шкала приводится к термодинамической Температурной шкале введением поправок, учитывающих характер связи термометрических свойства с термодинамической температурой. Термодинамическая Температурная шкала осуществляется не непосредственно (проведением цикла Карно с термометрическим веществом), а с помощью других процессов, связанных с термодинамической температурой. В широком интервале температур (примерно от точки кипения гелия до точки затвердевания золота) термодинамические Температурные шкалы совпадают с Температурной шкалой Авогадро, так что термодинамическую температуру определяют по газовой, которую измеряют газовым термометром. При более низких температурах термодинамическая. Температурная шкала осуществляется по температурной зависимости магнитной восприимчивости парамагнетиков, при более высоких -по измерениям интенсивности излучения абсолютно черного тела. Осуществить термодинамическую Температурную шкалу даже с помощью Температурной шкалы Авогадро очень сложно, поэтому в 1927 была принята Международная практическая температурная шкала (МПТШ), которая совпадает с термодинамической Температурной шкалой с той степенью точности, которая экспериментально достижима. Все приборы для измерения температуры градуированы в МПТШ.

 

Температура

Абсолютная температура

Кельвин

Международная практическая температурная шкала

Реомюра шкала

Температура

Температурные шкалы

Фаренгейта шкала

Цельсия шкала

 

Главная Добавить в закладки